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Abstract

We show that if M is a DFA with n states over an arbitrary alphabet and L = L(M),
then the worst-case state complexity of L

2 is n2n − 2n−1. If, however, M is a DFA
over a unary alphabet, then the worst-case state complexity of Lk is kn− k + 1 for all
k ≥ 2.

1 Introduction

We are often interested in quantifying the complexity of a regular language L. One natural
complexity measure for regular languages is the state complexity of L, that is, the number
of states in the minimal deterministic finite automation (DFA) that accepts L. Given an
operation on regular languages, we may also define the state complexity of that operation to
be the number of states that are both sufficient and necessary in the worst-case for a DFA
to accept the resulting language.

The first exact results for the state complexities of certain basic operations on regular
languages such as concatenation, Kleene star, etc. were given by Yu, Zhuang, and Salomaa
[7]. For instance, they proved that, given DFAs M1 and M2 with m and n states respectively,
there exists a DFA with m2n − 2n−1 states that accepts L(M1)L(M2). Moreover, there exist
M1 and M2 for which this bound is optimal. Some more recent work on the state complexity
of concatenation has been done by Jirásková [2] as well as Jirásek, Jirásková, and Szabari
[3].

We are interested here in the state complexity of the concatenation of a regular language
L with itself, which we denote L2. We show that the bounds of Yu, Zhuang, and Salomaa
for concatenation are also optimal for L2. In other words, if M is a DFA with n states and
L = L(M), then the worst-case state complexity of L2 is n2n − 2n−1. This bound, however,
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does not hold if we restrict ourselves to unary languages. Specifically, we show that if M is
a DFA over a unary alphabet, then the worst-case state complexity of Lk is kn − k + 1 for
all k ≥ 2.

We first recall some basic definitions. For further details see [1]. A deterministic finite

automaton M is a quintuple M = (Q, Σ, δ, q0, F ), where Q is a finite set of states; Σ is a
finite alphabet; δ : Q × Σ → Q is the transition function, which we extend to Q × Σ∗ in
the natural way; q0 ∈ Q is the start state; and F ⊆ Q is the set of final states. A DFA
M accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by M is the set of all
w ∈ Σ∗ such that δ(q0, w) ∈ F ; this language is denoted L(M). We denote the language
L(M)L(M) by L2(M). We may extend this notation to higher powers by the recursive
definition Lk(M) = Lk−1(M)L(M) for k ≥ 2.

2 State complexity of L2 for binary alphabets

In this section we consider the state complexity of L2 for languages L over an alphabet of
size at least 2.

Theorem 1. For any integer n ≥ 3, there exists a DFA M with n states such that the

minimal DFA accepting the language L2(M) has n2n − 2n−1 states.

Proof. That the minimal DFA for L2(M) has at most n2n − 2n−1 states follows from the
upper bound of Yu, Zhuang, and Salomaa for concatenation of regular languages mentioned
in the introduction. To show that n2n − 2n−1 states are also necessary in the worst case
we define a DFA M = (Q, Σ, δ, 0, F ) (Figure 1), where Q = {0, . . . , n − 1}, Σ = {0, 1},
F = {n − 1}, and for any i, 0 ≤ i ≤ n − 1,

δ(i, a) =











0 if a = 0 and i = 1,

i if a = 0 and i 6= 1,

i + 1 mod n if a = 1.

1

0

0

1

0 0

1

1 1
0 1 2 n−1

Figure 1: The DFA M

We will apply the construction of Yu, Zhuang, and Salomaa [7, Theorem 2.3] and show
that the resulting DFA is minimal (see [3] for another example of this approach). Let
M ′ = (Q′, Σ, δ′, (0, ∅), F ′), where
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• Q′ = Q × 2Q − F × 2Q−{0};

• F ′ = {(q, R) ∈ Q′ | R ∩ F 6= ∅}; and

• δ′((q, R), a) = (δ(q, a), R′), for all a ∈ Σ, where

R′ =

{

δ(R, a) ∪ {δ(0, a)} if q ∈ F ,

δ(R, a) otherwise.

Then L(M ′) = L2(M) and M ′ has n2n − 2n−1 states.
To show that M ′ is minimal we will show (a) that all states of M ′ are reachable, and (b)

that the states of M ′ are pairwise inequivalent with respect to the Myhill–Nerode equivalence
relation [4, 6]. In what follows, all arithmetic is done modulo n.

To prove part (a) let (i, R) be a state of M ′, where R = {r1, . . . , rk}. Let us assume that
0 ≤ r1 − 1 < · · · < rk − 1. If i = 0, we see that

δ′((0, ∅), 1n(10)rk−rk−11n(10)rk−1−rk−2 · · · 1n(10)r1−1) = (0, R).

If i > 0, then let R′ = {r1 − i, . . . , rk − i}. Just as for (0, R), we see that (0, R′) is reachable,
and since δ′((0, R′), 1i) = (i, R), (i, R) is also reachable, as required.

To prove part (b) let (i, R) and (j, S) be distinct states of M ′. We have two cases.
Case 1: R 6= S. Then there exists r such that r is in one of R or S (say R) but not both.

If i ∈ F , then r 6= 0. Hence δ′((i, R), 1n−1−r) ∈ F ′ but δ′((j, S), 1n−1−r) 6∈ F ′.
Case 2: R = S. Suppose i − 1 < j − 1. We have two subcases.
Case 2i: j + 1 6∈ S. Then δ′((i, R), 1n−j) = (i − j, R′) for some R′, and δ′((j, R), 1n−j) =

(0, S ′) for some S ′, where 1 6∈ R′ and 1 ∈ S ′. We may now apply the argument of Case 1 to
the states (i − j, R′) and (0, S ′).

Case 2ii: j + 1 ∈ S. Then let k = 1 if i − j = 1, and let k = 0 otherwise. Then
δ′((i, R), 1n−j1k0) = (i− j +k, R′) for some R′, and δ′((j, S), 1n−j1k0) = (0, S ′), where either
R′ 6= S ′ or 1 6∈ R′ = S ′. We may now apply the argument of either Case 1 or Case 2i, as
appropriate, to the states (i − j + k, R′) and (0, S ′).

3 State complexity of Lk for unary alphabets

In this section we show that the bound given in Theorem 1 does not hold if we restrict
ourselves to unary languages. We also give optimal bounds for the state complexity of
arbitrary powers Lk of a regular language L.

Following Pighizzini and Shallit [5], we note that the transition graph of a connected
unary DFA M with n states is composed of a “tail” with µ ≥ 0 states and a “cycle” with
λ ≥ 1 states, where n = µ + λ (see [5, Figure 1]). We may therefore denote the size of M by
the pair (λ, µ).

Pighizzini and Shallit give the following result regarding concatenation of unary DFAs.
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Theorem 2 (Pighizzini and Shallit). Let L1, L2 be unary languages accepted by DFAs

of sizes (λ1, µ1), (λ2, µ2) respectively. Then there exists a DFA M of size (λ, µ), where λ =
lcm(λ1, λ2) and µ = µ1 + µ2 + lcm(λ1, λ2) − 1, such that L(M) = L1L2.

From Theorem 2 we can derive the following upper bound for the state complexity of Lk.

Theorem 3. Let L be a unary language accepted by a DFA with n states. For all k ≥ 2,
there exists a DFA M with kn − k + 1 states such that L(M) = Lk.

Proof. We prove the following by induction on k: if L is accepted by a DFA of size (λ, µ),
where n = µ + λ, then for all k ≥ 2, there exists a DFA M of size (λ, kµ + (k − 1)λ− k + 1)
such that L(M) = Lk.

If k = 2, then an easy application of Theorem 2 with L1 = L2 = L gives a DFA M of
size (λ, 2µ + λ − 1) such that L(M) = L2.

If k > 2, then write Lk = Lk−1L. By induction, Lk−1 is accepted by a DFA of size
(λ, (k − 1)µ + (k − 2)λ − k + 2). Applying Theorem 2 with L1 = Lk−1 and L2 = L gives a
DFA M of size (λ, kµ + (k − 1)λ − k + 1) such that L(M) = Lk. The DFA M thus has

λ + kµ + (k − 1)λ − k + 1

= kµ + kλ − k + 1

= k(µ + λ) − k + 1

= kn − k + 1

states, as required.

The following theorem gives a matching lower bound for the state complexity of Lk.

Theorem 4. For any integers n, k, n ≥ 2, k ≥ 2, there exists a DFA M with n states over

a unary alphabet such that the minimal DFA accepting the language Lk(M) has kn − k + 1
states.

Proof. We define a DFA M = (Q, Σ, δ, 0, F ), where Q = {0, . . . , n−1}, Σ = {0}, F = {n−1},
and for any i, 0 ≤ i ≤ n−1, δ(i, 0) = i+1 mod n. The transition graph of M is thus a directed
n-cycle. Furthermore, L(M) = 0n−1(0n)∗. Hence, Lk(M) = (0n−1(0n)∗)k = 0k(n−1)(0n)∗. The
language Lk(M) is accepted by the DFA M ′ = (Q′, Σ, δ′, 0, F ′), where Q′ = {0, . . . , kn− k},
F ′ = {kn−k}, for any i, 0 ≤ i < kn−k, δ′(i, 0) = i+1, and δ′(kn−k, 0) = kn−k−n+1. To
see that the DFA M ′ is minimal, note that for any i, j, 0 ≤ i < j ≤ kn−k, δ′(i, 0kn−k−j) 6∈ F ′

and δ′(j, 0kn−k−j) ∈ F ′.

4 Further work

It remains to investigate the worst-case state complexity of L3, L4, etc. for general alphabets.
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